Deep Reinforcement Learning
for Solving Combinatorial Games
with Exponential Action Spaces

Supervised by Lucia Moura and Yongyi Mao



Reinforcement Learning
A Quick Refresher...

* Agent learns to perform a task
by interacting with an m
environment

action Reward| |State

* Applied to Robotics, Chess, Go a R 5.

* Agent takes actions based on m
the environment and receives

rewards

 Agent learns to maximize
expected cumulative reward



Attacker-Defender Game
Defender
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. First described by Paul Erdos and Spencer Selfridge (1973)
» Large action space for the attacker
* Easy to make the game more difficult

Erdos, P., & Selfridge, J. L. (1973). On a combinatorial game. Journal of Combinatorial Theory, Series A, 14(3), 298-301.



Attacker-Defender Game

Example game




Attacker-Defender Game
Optimal Play

* Easy to define optimal play

* (Spencer, 1994) gives the optimal
value function for each level:

Vi(k) =

Vet 1

* The potential is the value of all the
pieces on the board

* Represents the number of pieces that
will make it the castle if playing against
an optimal defender
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Spencer, J. (1994). Randomization, Derandomization and Antirandomization: Three Games.

Theoretical Computer Science, 131(2), 415-429.



Theorem 2.3 Attacker
Optimal Play

 Theorem 2.3: When playing
against an optimal defender, one
optimal approach for the
attacker i1s to make the value

according to vi of the two sets
as close as possible

potential = 0.75 potential = 0.35



Attacker-Defender Game

Scoring the Game

e We modified the win condition of

the original game
score > |potential| = attacker wins

score = |potential| = attacker draws
score < |potential| = attacker loses

e The score is the number of
pieces that reach the castle

* Allows the game to have many
more pieces on the board

» Useful for evaluating model
generalization



Challenges

Training an Agent

* Action space of attacker grows  We attempted several RL
exponentially with the number of approaches to train an agent on
levels and pieces the exponential action space

* (Raghu, Irpan, Andreas, « Attempted Table-Based Q-
Kleinberg, Le & Kleinberg, 2018) learning, Deep Q-learning, Actor-
proposed linear reduction Critic

o Attacker training was an * Failed to perform, and will not
afterthought with a simplified work for score-keeping games.

action space.

Raghu, M., Irpan, A., Andreas, J., Kleinberg, B., Le, Q., & Kleinberg, J. (2018, July).
Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer games?.
In International Conference on Machine Learning (pp. 4238-4246). PMLR.



Our Solution

Micro-actions

e Construct the partitions
iteratively

 Augment action space with a
"done" action, signifying end of
turn

e We call these micro-actions



Our Solution
Unifying Attacker and Defender

¢ Same model can play as an
Attacker or a Defender

e |f a Defender moves a piece from
one set to the other, it sees the
set being taken from as more
valuable

* |f it does not move a piece, it sees
the sets as having equal value

 Enabled agents to be trained via
self-play
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Our Solution
AlphaZero
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Our Solution

Micro-actions in Action




Results
Defending
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Results
Attacking
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Results

Generalization
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Results

Generalization
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Suboptimal Play

Exploiting Suboptimal Agents

Round Robin Scores

== Trained Agent == Theorem 2.3 Player Mostly Theorem 2.3 Player == Mostly Random Player == Random Player
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Suboptimal Agent

Playing Unbalanced

 Theorem 2.3: When playing
against an optimal defender, one
optimal approach for the
attacker i1s to make the value

according to vi of the two sets
as close as possible

potential = (0.5 potential = (0.5



Suboptimal Play

Theoretical Guarantees

* Optimal 1

V(i) = 2v(i + 1) V() = ——
| *( ) Vk+1
* Nearsighted
v() > 2v(i+ 1)

* Farsighted
. . We designed and proved algorithm for optimal play
v(i) < 2v(@i+ 1) against nearsighted and farsighted opponents.



Conclusion

Contributions

* (Generalized a family of classic combinatorial games, by
considering a score-keeping variant.

* Designed and implemented a novel RL algorithm to handle
exponential action spaces:

o Attackers and Defenders can now both be trained.
 We can train using true self-play, without expert knowledge.

 We achieve strong generalization — good performance on
score-keeping games.

* Proved theoretical guarantees for suboptimal play



Conclusion

Questions

* Thanks for listening!

 Thanks to Dr. Moura & Dr. Mao
for their guidance and support.



